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General boundary conditions for a Dirac particle in a box
and their non-relativistic limits
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Abstract. The most general relativistic boundary conditions (BCs) for a ‘free’ Dirac particle
in a one-dimensional box are discussed. It is verified that in the Weyl representation there is
only one family of BCs, labelled with four parameters. This family splits into three sub-families
in the Dirac representation. The energy eigenvalues as well as the corresponding non-relativistic
limits of all these results are obtained. The BCs which are symmetric under space inversionP

and those which areCPT invariant for a particle confined in a box, are singled out.

1. Introduction

A ‘free’ particle in a one-dimensional box is the canonical example of elementary non-
relativistic quantum mechanics. Recently, at least in the physical literature [1], the boundary
conditions (BCs) that force the energy eigenfunctions to vanish at the walls of the box were
generalized to a four-parameter family of BCs for which the Schrödinger ‘free’ Hamiltonian
is self-adjoint. These authors claim that this family of BCs is the general one for a particle
in a box. However, by using von Neumann’s theory of self-adjoint extensions of symmetric
operators, as exposed for example in [2], it was shown [3] that by maintaining the column
vectors of the BCs that relate linearly the wavefunction and its derivatives at the wall of the
box, there are three inequivalent families of self-adjoint extensions, one of which is that of
[1]. Moreover, these families represent the most general manifold of self-adjoint extensions
for a ‘free’ non-relativistic particle in a box [4].

In this paper, we examine, from the relativistic point of view, this problem by using
the Dirac equation. In the Weyl representation (WR), the most general BCs may be written
using only one family which splits into three families in the Dirac representation (DR). This
is the appropriate representation in order to take the non-relativistic limit.

On the other hand, the vanishing of the whole spinor at the walls yields to
incompatibility, that is to say, the problem has only the trivial solution [6]. The same
result has been obtained in the relativistic scattering on an impenetrable cylindrical solenoid
of finite radius [5, 6]. This is not actually surprising, inasmuch as the spinor has four
complex components which are coupled in a system of first-order differential equations.
So, to force all the components to vanish at the boundary is too restrictive. Something
similar occurs in electromagnetism by requiring that the field tensor vanish at the walls of
a wave guide, the only solution being the trivial one. Imposing less restrictive conditions,
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for example, by cancelling only parts of the electric and magnetic fields at the boundary, it
is found that a non-trivial solution exists (stationary waves).

A particular solution may be obtained by considering the Dirac equation with a Lorentz
scalar potential [7]; here the rest mass can be thought of as anx-dependent mass. This
permits us to solve the infinite square well problem as if it is were a particle with a changing
mass that becomes infinite out of the box, so avoiding the Klein paradox [8].

By considering the ‘free’ Dirac Hamiltonian along with appropriate BCs, we can
simulate the presence of potentials that constrain the particle to be in a certain region,
but these BCs should be such that the corresponding Hamiltonian be self-adjoint. For this,
it is worth emphasizing that the specification of its domain, which includes the BCs, is an
essential part of the definition of all operators in quantum mechanics. Moreover, different
BCs lead to different physical consequences. For relativistic scattering problems [6, 9], it
has been proposed that the vanishing of only the large component of the Dirac spinor is a
physically acceptable BC. It can be easily seen that, for the ‘free’ particle in a box, in the
non-relativistic limit this BC yields the well known Dirichlet BC. Furthermore, such a BC is
only one of the infinite self-adjoint extensions of the ‘free’ Dirac Hamiltonian. This result,
as well as the eigenvalues and eigenfunctions for the family of self-adjoint extensions of
the ‘free’ Dirac Hamiltonian in the WR, was obtained in [10].

The problem of a Dirac fermion in a one-dimensional box interacting with a scalar
solitonic potential, with periodic [11], as well as with more general BC [12], was considered
earlier, in order to elucidate the phenomenon of the fractional fermion number. For the
case of the Dirac ‘free’ massless operator, also in(1 + 1) dimensions, eigenvalues and
eigenfunctions have been obtained for a family of self-adjoint extensions in [13]. The case
with a non-zero vector potential was examined in [14].

In section 2, and in appendix A, we verify that in the WR the self-adjoint extensions
of the Hamiltonian of a ‘free’ Dirac particle in a one-dimensional box, may be written
by means of only one family. This family leads to three non-equivalent families of self-
adjoint extensions for this operator in the standard or DR. In the last part of section 2, for
each family of self-adjoint extensions,, we give the energy eigenvalues as well as several
examples of BCs which may be of physical interest. We also select the BCs according to
their invariance underP andCPT transformations.

In section 3, the non-relativistic limit of each family of self-adjoint extensions in the DR
is obtained, as well as their non-relativistic energy eigenvalues. We write the most general
non-relativistic BCs obtained from the non-relativistic limit of the single relativistic family
in the WR.

2. Self-adjoint extensions

The Dirac equation for a relativistic ‘free’ particle inside a one-dimensional box, with fixed
walls atx = 0 andx = L, may be written as

ih̄
∂

∂t
9(x, t) =

(
−ih̄cα

∂

∂x
+mc2β

)
9(x, t) (1)

where9 denotes a two-component spinor depending uponx ∈ � = [0, L] and upon time.
The 2× 2 matricesα andβ satisfy: αβ + βα = 0 andα2 = β2 = 1. In the DR:α = σx
andβ = σz. In the WR:α = σz andβ = σx .

The Dirac eigenvalue equation is given by

(Hψ)(x) =
(
−ih̄cα

d

dx
+mc2β

)
ψ(x) = Eψ(x) (2)
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whereψ is related to9 by 9(x, t) = ψ(x)e−i(E/h̄)t .
The spinorsψ(x) and (Hψ)(x) belong to a dense proper subset of the Hilbert space

H = L2(�)⊕L2(�), with a scalar product denoted by〈, 〉. The domain ofH and its adjoint
H ∗ verify Dom(H) ⊆ Dom(H ∗); but H must be self-adjoint, so we look for self-adjoint
extensions of the symmetric operatorH (appendix A).

In the DR,

ψD(x) =
(
φ(x)

χ(x)

)
whereφ andχ are respectively, the spatial parts of the so-called large and small components
of the Dirac spinor. On the other hand, in the WR we write

ψw(x) =
(
ψ1(x)

ψ2(x)

)
.

In order to change representation, we use the transformationφ = (1/
√

2)(ψ1 + ψ2) and
χ = (1/√2)(ψ1− ψ2).

2.1. Self-adjoint extensions in the WR

In this representation there exists a four-parameter family of self-adjoint extensions of the
formal Hamiltonian operator,Hw ≡ (Hw)θ,µ,τ,γ

(Hw)θ,µ,τ,γ = −ih̄cσz
d

dx
+mc2σx (3)

with its domain given by [10, 12–14]

Dom(Hw) =
{
ψw =

(
ψ1

ψ2

) ∣∣∣∣ψw ∈ H, a.c. in�, (Hwψw) ∈ H ψw fulfils(
ψ1(L)

ψ2(0)

)
= U

(
ψ2(L)

ψ1(0)

)
, U−1 = U †

}
(4)

where hereafter a.c. means absolutely continuous functions and the symbol ‘†’ denotes the
adjoint of a vector or a matrix. The unitary matrixU may be written as

U =
(
v u

s w

)
(5)

wherev = eiµeiτ cosθ , u = eiµeiγ sinθ , s = eiµe−iγ sinθ andw = −eiµe−iτ cosθ , with
06 θ < π , 06 µ, τ, γ < 2π .

It is worth noting that with this parametrization the self-adjoint extensions are not
labelled in a single form, that is to say, the same boundary condition may be given by
a sub-family of parameters. Let us also point out that the same four-parameter family of
self-adjoint extensions is valid when a bounded potential is present inside the box.

It can be shown that for every spinorψw ∈ Dom(Hw), the current densityj (x) =
cψ
†
wσzψw satisfies at the walls of the boxj (0) = j (L), and for some of the extensions

(θ = 0) it is verified thatj (0) = j (L) = 0, which leads to the relativistic impenetrability
condition at the walls of the box.

In appendix A, we briefly verify that in the domain ofHw are included all BCs that
makeHw self-adjoint.

In the WR the general solution of (2) can be written as

ψw = c1

(
1

E−h̄ck
mc2

)
eikx + c2

(
E−h̄ck
mc2

1

)
e−ikx (6)
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wherek = (E2− (mc2)2)1/2/h̄c andc1, c2 are arbitrary complex constants. Imposing upon
this spinor the BCs given in (4), an homogeneous algebraic system forc1, c2 is obtained,
whose determinant must be zero, and from which the following transcendental equation for
the energy eigenvalues follows:

cos(µ− kL)−
(
E − h̄ck
mc2

)2

cos(µ+ kL)−
[

1−
(
E − h̄ck
mc2

)2
]

cosγ sinθ

+2

(
E − h̄ck
mc2

)
sinτ cosθ sin(kL) = 0. (7)

2.2. Self-adjoint extensions in the DR

In order to obtain the non-relativistic families of BCs, let us first change to the DR. From
Hw, with its domain given in (4), and using the transformation from the WR to DR we have(

1+ v u

s 1+ w
)(−χ(L)

χ(0)

)
=
(

1− v −u
−s 1− w

)(
φ(L)

φ(0)

)
. (8)

Then, three families of self-adjoint extensions ofHD are obtained. Firstly

H
(1)
D ≡ (H (1)

D )θ,µ,τ,γ = −ih̄cσx
d

dx
+mc2σz (9)

whose domain can be written as

Dom(H (1)
D ) =

{
ψD =

(
φ

χ

) ∣∣∣∣ψD ∈ H, a.c. in�, (H(1)
D ψD) ∈ H, ψD fulfils(−χ(L)

χ(0)

)
= A1

(
φ(L)

φ(0)

)
, A1 = −(A1)

†
}

(10)

where

A1 = i(sinµ− sinτ cosθ)−1

(
cosµ− cosτ cosθ −eiγ sinθ
−e−iγ sinθ cosµ+ cosτ cosθ

)
(11)

with the restriction sinµ− sinτ cosθ 6= 0.
Likewise,

H
(2)
D ≡ (H (2)

D )θ,µ,τ,γ = −ih̄cσx
d

dx
+mc2σz (12)

acting on the domain

Dom(H (2)
D ) =

{
ψD =

(
φ

χ

) ∣∣∣∣ψD ∈ H, a.c. in�, (H(2)
D ψD) ∈ H, ψD fulfils(

φ(L)

φ(0)

)
= A2

(−χ(L)
χ(0)

)
, A2 = −(A2)

†
}

(13)

where

A2 = i(sinµ+ sinτ cosθ)−1

(
cosµ+ cosτ cosθ eiγ sinθ

e−iγ sinθ cosµ− cosτ cosθ

)
(14)

with the restriction sinµ+ sinτ cosθ 6= 0.
Let us note that the boundary conditions included in (10) are not always equivalent to

those given in (13), because detA1 and detA2 may be zero. Thus,H(1)
D andH(2)

D are two
different families of self-adjoint extensions of the relativistic ‘free’ Hamiltonian.

Finally, let us consider the cases where the above two restrictions are changed to
sinµ − sinτ cosθ = 0 and sinµ + sinτ cosθ = 0. This corresponds to the vanishing
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of the determinants of the matrices in (8). It can be shown that all BCs in this new family
are obtained from (8), and are included in some of the following cases: (i)µ = 0, τ = 0;
(ii) µ = 0, τ = π ; (iii) µ = π , τ = 0; and (iv)µ = π , τ = π ; where 06 θ < π and
06 γ < 2π . We write this family as

H
(3)
D ≡ (H (3)

D )θ,µ,τ,γ = −ih̄cσx
d

dx
+mc2σz (15)

with the domain given by

Dom(H (3)
D ) =

{
ψD =

(
φ

χ

) ∣∣∣∣ψD ∈ H, a.c. in�, (H(3)
D ψD) ∈ H, ψD fulfils equation (8)

with the following cases: (i)µ = 0, τ = 0; (ii) µ = 0, τ = π;
(iii) µ = π, τ = 0; and (iv)µ = π, τ = π

}
. (16)

In the DR we have three energy eigenvalue equations, one for each Hamiltonian operator
H
(1)
D , H(2)

D , H(3)
D . The general solution may be written as

ψD = d1

(√
E +mc2√
E −mc2

)
eikx + d2

( √
E −mc2

−√E +mc2

)
e−ikx (17)

with d1, d2 arbitrary complex constants. By imposing upon this solution the boundary
conditions included in the domains of the operatorsH(1)

D , H(2)
D , H(3)

D , the following
eigenvalue equations are obtained{
E + (−1)jmc2

h̄c
+ E + (−1)j+1mc2

h̄c
Dj

}
sin(kL)+ Fjk cos(kL)−Gjk = 0 (18)

where

Dj = sin2 θ − cos2µ+ cos2 τ cos2 θ

(sinµ+ (−1)j sinτ cosθ)2
Fj = 2 cosµ

sinµ+ (−1)j sinτ cosθ

and

Gj = 2 sinθ cosγ

sinµ+ (−1)j sinτ cosθ
with j = 1, 2.

The casej = 1 corresponds to the eigenvalue equation ofH
(1)
D andj = 2 toH(2)

D . For the
third family, the energy eigenvalues ofH(3)

D are obtained from

cos(kL) = ± sinθ cosγ (19)

where the upper sign corresponds to the cases (i) and (ii) and the lower sign to the cases
(iii) and (iv).

2.3. Some typical BCs

BCs are frequently referred to spinors in the DR because of its non-relativistic limit. We
therefore give several examples involvingψD, which also belong to Dom(Hw):

(a)

θ = 0 µ = τ = π/2 06 γ < 2π
BC : φ(0) = φ(L) = 0 ∈ Dom(H (2)

D )

(b)

θ = 0 µ = π/2 τ = 3π/2 06 γ < 2π
BC : χ(0) = χ(L) = 0 ∈ Dom(H (1)

D )
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(c)

θ = 0 µ = τ = 0, π 06 γ < 2π
BC : φ(0) = χ(L) = 0 ∈ Dom(H(3)

D )

(d)

θ = 0 {µ 6= τ } = 0, π 06 γ < 2π
BC : φ(L) = χ(0) = 0 ∈ Dom(H (3)

D )

(e)

θ = 0 µ = 0 τ = π/2 06 γ < 2π
BC : χ(L) = iφ(L) andχ(0) = −iφ(0) ∈ Dom(H (1)

D ) ∩ Dom(H (2)
D )

(f)

θ = π/2 µ = γ = 0, π τ = 0, π
BC : ψD(0) = ψD(L) ∈ Dom(H (3)

D )

(g)

θ = π/2 {µ 6= γ } = 0, π τ = 0, π
BC : ψD(0) = −ψD(L) ∈ Dom(H (3)

D ).

It is worth noting that all these BCs are obtained without making the matricesA1 andA2

singular, or those given in (8). On the other hand, the BCs (a)–(e), can be used if we consider
the walls of the box as impenetrable barriers, that is, for the current densityj (x) = cψ†DσxψD

to be zero at the walls of the box. The vanishing of the normal component (to any surface)
of the relativistic current density has been used in the MIT bag model of quarks confinement,
see, for example, [15]. In(1+ 1) dimensions this BC is±(−i)βαψ = ψ , where the minus
sign corresponds tox = 0 and the plus sign tox = L. This BC in the DR is precisely (e).

2.4. Parity andCPT invariance

Let us single out the BCs which are symmetric under space inversionP , and those which
areCPT invariant. The Dirac spinor transforms under the discrete transformationsP, T , C

in the Weyl representation according to

P9w(x, t) = σx9w(L− x, t)
T 9w(x, t) = −σx9w(x,−t)
C9w(x, t) = σz9w(x, t)

(CPT )9w(x, t) = −σz9w(L− x,−t)

(20)

where9̄ is the complex conjugate of9. In order to change from the WR to the DR it is
enough to replace9w → 9D andσx ↔ σz.

If the Hamiltonian in the WR is invariant under the parity transformation we write

PHw = HwP. (21)

Then, the spinor must satisfyPψw ∈ Dom(Hw), that is, the parity transformed spinor must
obey the same BC asψw does. Thus, the parametersγ and τ take the valuesγ = 0;
τ = π/2, 3π/2 or γ = π ; τ = π/2, 3π/2. For a particle confined in a box,θ = 0 and the
four-parameter unitary matrix becomes

U = ei(µ±(π/2))
(

1 0
0 1

)
. (22)
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Similarly, in order to obtain aCPT invariant Hamiltonian, we require

(CPT )Hw = Hw(CPT ). (23)

So, (CPT )ψw ∈ Dom(Hw) if µ = 0; γ = 0, π or µ = π ; γ = 0, π . In addition, for a
particle confined in a box,θ = 0 and

U = ±
(

eiτ 0
0 −e−iτ

)
. (24)

In the DR the corresponding BCs are MIT bag-like which forτ = π/2 become

χ(L) = ∓iφ(L) χ(0) = ±iφ(0). (25)

From those BCs given in section 2.3, the cases (a), (b), (e), (f), and (g) are invariant under
the parity transformation, but only (e), (f), and (g) areCPT invariant.

3. Non-relativistic limits (NRLs)

As is well known, in the DR the Dirac equation (2) for stationary states is equivalent to the
system

−ih̄c
d

dx
φ = (E +mc2)χ − ih̄c

d

dx
χ = (E −mc2)φ. (26)

We achieve the NRL by lettingc → ∞. However, the Dirac operator,H(c) − mc2,
makes no sense forc = ∞. The correct way to analyse the NRL is to look at its resolvent. It
has been proved [7, 16] that the NRL of the Dirac resolvent is the resolvent of a Schrödinger
or Pauli operator times a projection to the upper components of the Dirac wavefunction.
Then, the eigenvalues,E(c) − mc2, are analytic in the parameter 1/c2. Likewise, the
upper or large component is analytic in 1/c2. So, assuming thatφ(x, c) = φ(x,−c),
χ(x, c) = −χ(x,−c), andE(c) = E(−c), the functionsφ(x,−c) and χ(x,−c) satisfy
equations (26) withc→−c; consequently, we may write the following expansions inc for
φ(x, c) andχ(x, c) [17]

φ = φNR+ 1

c2
φ1+ 1

c4
φ2+ · · ·

χ = 1

c
χNR+ 1

c3
χ1+ 1

c5
χ2+ · · · (27)

and for the energy

E = mc2+ ENR+ 1

c2
E1+ 1

c4
E2+ · · · . (28)

Substituting relations (27) and (28) in (26) and comparing the terms of the lower order,
the following system is obtained:

i
d

dx
φNR+ 2m

h̄
χNR = 0 i

d

dx
χNR+ ENR

h̄
φNR = 0. (29)

EliminatingχNR, we obtain the eigenvalue Schrödinger equation

(HNRφNR)(x) = − h̄
2

2m

d2

dx2
φNR(x) = ENRφNR(x). (30)

Here,φNR belongs to the Hilbert spaceHNR = L2(�), with scalar product denoted by〈, 〉.
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In the NRL, the connection between the componentsφ andχ of the Dirac spinorψD,
and the Schr̈odinger eigenfunctionφNR, is obtained by keeping only the first term of the
expansions (27), and using the first equation of (29), that is

φ→ φNR χ →−λi
d

dx
φNR (31)

whereλ = h̄/(2mc). With these relations we may calculate the NRL up to order 1/c of
any quantum mechanical expression in(1+ 1) spacetime dimensions, as well as of each
relativistic family of self-adjoint extensions.

Let us now consider the operatorH(1)
D . In the NRL, the matricial BC included in its

domain becomes(−λφ′NR(L)

λφ′NR(0)

)
= iA1

(
φNR(L)

φNR(0)

)
where the primes, hereafter, point out differentiation with respect tox. The matrixA1 is
anti-Hermitian, so iA1 = M1 is Hermitian.

The first four-parameter family of self-adjoint extensions of the non-relativistic ‘free’
Hamiltonian operator consists of the operators

H
(1)
NR ≡ (H (1)

NR)θ,µ,τ,γ = −
h̄2

2m

d2

dx2
(32)

with domain

Dom(H (1)
NR) =

{
φNR|φNR ∈ HNR, φNR andφ′NR a.c. in�, (H(1)

NRφNR) ∈ HNR, φNR fulfils(−λφ′NR(L)

λφ′NR(0)

)
= M1

(
φNR(L)

φNR(0)

)
,M1 = (M1)

†
}
. (33)

In appendix B, we obtain, as an example, the NRL of the Hermiticity condition imposed
upon the operatorH(1)

D . This, leads to the Hermiticity condition for the operatorH(1)
NR.

Analogously, the NRL of the familiesH(2)
D andH(3)

D lead to the operatorsH(2)
NR andH(3)

NR
respectively, with their domains

H
(2)
NR ≡ (H (2)

NR)θ,µ,τ,γ = −
h̄2

2m

d2

dx2
(34)

Dom(H (2)
NR) =

{
φNR|φNR ∈ HNR, φNR andφ′NR a.c. in�, (H(2)

NRφNR) ∈ HNR, φNR fulfils(
φNR(L)

φNR(0)

)
= M2

(−λφ′NR(L)

λφ′NR(0)

)
,M2 = (M2)

†
}

(35)

whereM2 = −iA2, and finally

H
(3)
NR ≡ (H (3)

NR)θ,µ,τ,γ = −
h̄2

2m

d2

dx2
(36)

Dom(H (3)
NR) = {φNR|φNR ∈ HNR, φNR andφ′NR a.c. in�, (H(3)

NRφNR) ∈ HNR, φNR

fulfils equation (8) with relations (31) for the cases given in (16)}. (37)

The energy eigenvalue equations forH(1)
HR andH(2)

NR, obtained from the NRL of (18) are
given respectively by

{(λkNR)
2+D1} sin(kNRL)+ F1λkNR cos(kNRL)−G1λkNR = 0 (38)

{(λkNR)
2D2+ 1} sin(kNRL)+ F2λkNR cos(kNRL)−G2λkNR = 0 (39)
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with h̄kNR =
√

2mENR. Likewise, the energy eigenvalues ofH(3)
NR are

cos(kNRL) = ± sinθ cosγ (40)

where the plus sign corresponds to the cases (i) and (ii) and the minus sign to the cases (iii)
and (iv). The transcendental equation for the eigenvalues ofH

(1)
NR is a functionf (kNR) = 0,

similar to that obtained by da Luz and Cheng [1].
The BCs given in the Dom(H (1)

NR) are similar to those in the literature [1]. In order
to have the most general BC for a non-relativistic ‘free’ particle inside a box, we have
to consider all these three families with domains given by, Dom(H

(1)
NR), Dom(H (2)

NR), and
Dom(H (3)

NR) [3]. However, it is possible to have only one matricial condition that includes
all possible BCs for which the self-adjointness ofHNR is maintained. This condition is
precisely the NRL of the matricial BC included in Dom(Hw).

In fact, this family of four-parameter Hamiltonians is

HNR ≡ (HNR)θ,µ,τ,γ = − h̄
2

2m

d2

dx2
(41)

with domain

Dom(HNR) =
{
φNR|φNR ∈ HNR, φNR andφ′NR a.c. in�, (HNRφNR) ∈ HNR, φNR fulfils(
φNR(L)− λiφ′NR(L)

φNR(0)+ λiφ′NR(0)

)
= U

(
φNR(L)+ λiφ′NR(L)

φNR(0)− λiφ′NR(0)

)
, U−1 = U †

}
(42)

with U given by (5).
All possible BCs for whichHNR is self-adjoint are included in Dom(HNR). It is worth

noting that, as opposed to the results given in [1], all these BCs are obtained without making
infinite the elements ofU . The NRLs of the BCs given in section 2.3 are

(a) ‘Dirichlet condition’

φNR(0) = φNR(L) = 0 ∈ Dom(H (2)
NR)

(b) ‘Neumann condition’

φ′NR(0) = φ′NR(L) = 0 ∈ Dom(H (1)
NR)

(c) ‘Mixed condition’

φNR(0) = φ′NR(L) = 0 ∈ Dom(H (3)
NR)

(d) ‘Another mixed condition’

φNR(L) = φ′NR(0) = 0 ∈ Dom(H (3)
NR)

(e) ‘NRL in the MIT bag model’

−λφ′NR(L) = φNR(L) andλφ′NR(0) = φNR(0) ∈ Dom(H (1)
NR) ∩ Dom(H (2)

NR)

(f) ‘Periodic condition’

φNR(0) = φNR(L) andφ′NR(0) = φ′NR(L) ∈ Dom(H (3)
NR)

(g) ‘Anti-periodic condition’

φNR(0) = −φNR(L) andφ′NR(0) = −φ′NR(L) ∈ Dom(H (3)
NR).

Obviously, these BCs represent different physical situations, in fact, (a)–(e) correspond
to different definitions of barrier impenetrability and, with them,jNR vanishes at the walls
of the box.
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4. Conclusions

The most general BCs to be satisfied by the Dirac spinor of a relativistic ‘free’ particle in
a one-dimensional box in the WR, can be given in terms of only one family of self-adjoint
extensions of four parameters of the ‘free’ Dirac Hamiltonian. In order to obtain the NRL,
one must change to the DR. However, this procedure leads to three families of self-adjoint
extensions for the Hamiltonian; that is to say, there are three types of BC for which the ‘free’
Hamiltonian of the DR is self-adjoint. Taking the non-relativistic limit of each one of these
families, we have obtained three families of self-adjoint extensions for the non-relativistic
‘free’ Hamiltonian. It is worth stressing that only the three families together provide all
possible BCs for a non-relativistic ‘free’ particle in a one-dimensional box, and that the
matrix parameters connecting the spinor components at the walls of the box take only finite
values. The corresponding eigenvalue equations depending on four parameters were also
obtained, as well as their non-relativistic limits. Since in the WR it is possible to write down
all self-adjoiint extensions in a single family, we have written the three previously found
non-relativistic families in terms of only one family. Among the infinite BCs for which
the Dirac ‘free’ hamiltonian is self-adjoint, we have singled out those which are invariant
under the space inversionP and under theCPT transformation. We emphasize that only
the MIT bag model-like BCs remain valid after imposing theCPT invariance.
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Appendix A

According to Von Neumann’s theory of deficiency indices, a symmetric operatorH has
self-adjoint extensions if the solutionsψ± of the eigenvalues problemH ∗ψ± = ±iωψ±,
ω ∈ R, belong toH, and if the dimensions of the solution spacesn± verify n+ = n− 6= 0.
In our case, it is not difficult to check thatn+ = n− = 2. Therefore, there exist families of
22 = 4 parameters of self-adjoint extensions.

Without using the machinery of Von Neumann’s theory of self-adjoint extensions of
symmetric operators [2], and without intending to be rigorous, let us briefly consider the
construction of a self-adjoint operator from the formal Hamiltonian

Hw = −ih̄cσz
d

dx
+mc2σx (A1)

whose dense domain may be written as

Dom(Hw) =
{
ψw =

(
ψ1

ψ2

) ∣∣∣∣ψw ∈ H, a.c. in�, (Hwψw) ∈ H,with ψw(0)=ψw(L)=0

}
.

(A2)

With the BCψw(0) = ψw(L) = 0, Hw is certainly a Hermitian operator, that is, for all
ζ , η ∈ Dom(Hw)

〈Hwζ, η〉 − 〈ζ,Hwη〉 = ih̄c[(ζ †σzη)(L)− (ζ †σzη)(0)] = 0 (A3)

and since Dom(Hw) is dense,Hw is a symmetric operator. Nevertheless, its eigenvalue
equation has only the trivial solutionψw = 0. This suggests that the BC on the
wavefunctions in Dom(Hw) are too restrictive.
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Then, it is necessary to extend the set of functions in Dom(Hw) by allowing more general
BCs. A wider and simple domain of functions is obtained just by requiringψw(0) = ψw(L).
With this BC the eigenvalue equation ofHw now has non-trivial solutions, and as we have
seen in section 2.3,Hw with this BC is one of the infinite self-adjoint extensions of the
initial symmetric operator (A1).

On the other hand, the quantum dynamics requires thatHw be a self-adjoint operator.
For this it is necessary that Dom(Hw) = Dom(H ∗w), whereH ∗w, defined by the same formal
operator (A1) is the adjoint of the differential operatorHw. Its domain is defined as [2]

Dom(H ∗w) =
{
ν =

(
ν1

ν2

) ∣∣∣∣ν ∈ H, a.c. in�, (H ∗wν) ∈ H
}

with

〈Hwζ, ν〉 − 〈ζ,H ∗wν〉 = ih̄c[(ζ †σzν)(L)− (ζ †σzν)(0)] = 0 (A4)

for all

ζ =
(
ζ1

ζ2

)
∈ Dom(Hw) and ν =

(
ν1

ν2

)
∈ Dom(H ∗w).

Here, Dom(Hw) ⊆ Dom(H ∗w). Now the problem is choosing a sufficiently general set
of boundary conditions for which Dom(Hw) = Dom(H ∗w). If Dom(Hw) is fixed, H ∗w
will be the adjoint ofHw if it has the maximal domain consistent with the vanishing
of (ζ †σzν)(L)− (ζ †σzν)(0), for all ζ ∈ Dom(Hw).

In order to enlarge the initial domain ofHw, let us consider a pair of sufficiently general
linear relations amongζ1(0), ζ1(L), ζ2(0), ζ2(L)

N1

(
ζ1(L)

ζ2(0)

)
= N2

(
ζ2(L)

ζ1(0)

)
(A5)

whereN1 andN2 are matrices with complex elements.
If both determinants do not vanish, we write(

ζ1(L)

ζ2(0)

)
=
(
a b

c d

)(
ζ2(L)

ζ1(0)

)
. (A6)

If detN1 = detN2 = 0, without loss of generality we can write(
0 0
δ1 δ2

)(
ζ1(L)

ζ2(0)

)
=
(
δ3 δ4

0 0

)(
ζ2(L)

ζ1(0)

)
(A7)

with δ1, δ2, δ3, δ4 being non-zero complex numbers. Nevertheless, with this BCHw must
be a symmetric operator, and this implies that allδi must be zero, so,ζ1(L) andζ2(0) are
‘independent’, as well asζ2(L) andζ1(0).

Thus, by replacing the relation (A6) in (A4) it may be verified that a necessary and
sufficient condition for the vanishing of(ζ †σzν)(L)− (ζ †σzν)(0) is(

ν2(L)

ν1(0)

)
=
(
ā c̄

b̄ d̄

)(
ν1(L)

ν2(0)

)
. (A8)

To make sure that Dom(Hw) = Dom(H ∗w), this condition must be equivalent to (A6) and
this is satisfied if

aā + cc̄ = 1 bb̄ + dd̄ = 1 ab̄ + cd̄ = 0. (A9)

These relations imply that the matrix in (A6) is unitary, so it has an inverse. Its general
form depends on four parameters.

In this way the chosen family of self-adjoint extensions ofHw is the most general one
and consists of the operators(Hw)θ,µ,τ,γ given by (3) acting on the domain given by (4).
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Appendix B

The relativistic formal HamiltonianH(1)
D in the DR is a Hermitian operator, and therefore

satisfies the condition

〈H(1)
D ζ, η〉 − 〈ζ,H (1)

D η〉 = ih̄c[(ζ †σxη)(L)− (ζ †σxη)(0)] = 0 (B1)

for all ζ andη in the domain ofH(1)
D . Taking the NRL of the right-hand side term in (B1),

that is, making

ζ =
(
ζl
ζs

)
→
(

ζNR

−iλζ ′NR

)
and η =

(
ηl
ηs

)
→
(

ηNR

−iλη′NR

)
one obtains

− h̄
2

2m

[
(ζ ′NRηNR− ζNRη

′
NR)(L)− (ζ ′NRηNR− ζNRη

′
NR)(0)

]
= 0. (B2)

This last relation is precisely〈H(1)
NRζNR, ηNR〉−〈ζNR, H

(1)
NRηNR〉 = 0, that is,H(1)

NR is Hermitian.
Relation (B2) is valid for allζNR andηNR in the domain ofH(1)

NR.
Likewise, the NRL of the current density in the DR,j (x) = cψ†DσxψD, yields

jNR(x) = − h̄

2im

(
φ′NRφNR− φNRφ

′
NR

)
.

Certainly, we can extend this procedure to the operatorH
(1)∗
D , in order to obtain the

corresponding domain of the operator

H
(1)∗
NR = −

h̄

2m

d2

dx2
.

Its domain is

Dom(H (1)∗
NR ) = {νNR|νNR ∈ HNR, a.c. in�, (H(1)∗

NR νNR) ∈ HNR}
with

〈H(1)
NRζNR, νNR〉 − 〈ζNR, H

(1)∗
NR νNR〉 = 0 (B3)

for all ζNR ∈ Dom(H (1)
NR) andνNR ∈ Dom(H (1)∗

NR ).
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